2025年11月17日
深视智能2025年11月14日
配天机器人2025年11月14日
TE2025年11月14日
西门子2025年11月14日
蔡司工业
2025年11月13日
埃尔森
2025年11月10日
BBS
2025年11月07日
劳易测
2025年11月06日
和利时
2025年11月14日
威图
2025年11月14日
TE
2025年11月14日
KUKA
2025年11月14日
先导智能
2025年11月14日
TDK
| 0 引 言
快速成型技术以增材制造思想(MIM:Material Increasing Manufacturing)一次快速成型复杂的零部件或模具。以下以SLS(Selective Laser Sintering激光选区烧结)为例说明成型方法。
图1 SLS成型的工作原理图 由上例可知,SLS成型控制过程是一个复杂、综合性的数控加工过程。其控制的目标为实现全自动的电气拖动机床运动控制运动,并尽量减少误操作。它牵涉到多轴多运动参数以及多过程参数控制,在控制过程中还有大量的CAD数据处理和成型运动轨迹信息传输的任务。因此,该控制系统的设计目标为:实现最佳的成型效果,提高成型效率。 1 控制系统设计 快速成型系统主要可以分为数据处理和成型执行两大部分。数据处理部分完成由三维CAD模型加工轨迹的离散过程,由高性能计算机处理。下层成型执行部分根据离散化后的信息加工过程的执行和控制,由数控RP&M(Rapid Prototyping/Part Manufacturing)设备来完成。通过对国内外一些快速成型控制系统的深入分析可发现,其控制系统的控制任务分立顺序完成,这种串行化控制方案具有极大的耗时性,成型效率低。针对这个缺点,在本控制系统的研究开发过程中提出了模块化的数据处理和成型控制并行运作的方法和多处理器主从式并行交互通信的控制系统总体结构。这些方案体现了极大的时间节约性和整体协调性。
图2 控制系统的数据流图 下层子机系统进行成型运动控制。其CPU采用高速芯片DS80C320。主要任务为电气运动控制,它一方面按照预定的顺序与主机相互触发,实现CNC信息和运动参数的接受,控制RP&M成型运动,一方面响应上层主机传输的控制命令,对运动状态进行控制。在下层机的设计中,为避免以往在VLSI电路之间使用LSI或MLSI器件进行接口而造成的结构繁琐庞大的缺点,采用可编程逻辑器件(ispPLD)替代传统的TTL器件,使下层机系统的功能和可靠性大为增强。
图3 控制系统的总体结构图 2 控制系统效果分析 本快速成型控制系统已成功应用于南京航空航天大学的选择性激光烧结设备上,并参加了97年全国模具机床展。该控制系统通过采用并行化控制的总体结构和多处理器主从式交互通讯的控制方式,实现了多项复杂控制任务的高效并行协调运动。 |