info
西门子:电池白皮书
行业动态
MORE...
应用案例
MORE...
技术前沿
MORE...
当前位置:首页 行业资讯 正文
基于拓扑优化的某微型车车门轻量化研究
转载 :  zaoche168.com   2014年01月23日

吴飞,曾霁,石少亮
(湖南大学机械与运载工程学院;湖南大学汽车车身先进设计制造国家重点实验室)

  摘要:目前汽车轻量化技术已经成为汽车技术发展中一个非常重要的研究课题。在实现汽车轻量化的众多方法中优化汽车的结构是当今研究的重点,也是应用最普遍、效果最明显的方法。本文即从结构优化的角度实现了车门的轻量化。本文在已知车门初始性能的基础上借助OptiStruct对车门进行了拓扑优化和厚度优化,从而实现了车门的轻量化。最后将车门的新方案和原方案的仿真性能进行对比,结果显示在车门质量减少了7.57%的同时,车门各性能都有一定程度的提高。从而证明了此轻量化方案的可行性。

  1. 引言

  近年来,资源问题、环境问题日益突出,而汽车作为与这些问题息息相关的因素之一,节能微排就成了汽车工业义不容辞的责任。因此,汽车轻量化已经成为汽车技术发展中一个非常活跃的研究课题。目前实现汽车轻量化的主要途径有优化汽车结构、采用新工艺和使用轻质材料。其中优化汽车的结构是技术最成熟、应用最广泛、效果最明显的途径。本文在已知车门仿真性能的基础上对车门结构完成了拓扑优化,并对车门各零件进行厚度优化,从而得到了最终的轻量化方案。最后仿真对比分析了原车门和新车门的刚度性能和模态性能,结果证明了此轻量化方案的可行性。

  2、车门的轻量化

  2.1 刚度及模态目标的初步确定

  表1列出了车门的七个初始刚度的性能均符合某公司的标准,但各刚度极度不平衡,可能会导致局部变形过大的问题。刚度目标的确定,就是要协调各刚度值,在保证车门性能基本不变的情况下,适当减弱刚度较好的刚度值,提高较差的刚度值,使得车门整体结构均匀、平衡。

  相比其他车型的车门,下垂刚度处于中等水平,因此目标与初始状态保持一致。而上扭刚度明显较好,离标准有充裕的盈余,因此可以适当减弱;而下扭刚度则相对较差,需要提高。窗框中部刚度刚好满足要求,有待提高,而角部工况可以适当减弱;外板带线刚度也处于中等水平,目标与初始状态保持一致,而内板带线刚度则太好,有较大的减弱空间。

  车门模态中最重要的是整体弯曲和整体扭转模态,这两阶模态代表了车门整体抗弯抗扭的能力。本文也只取这两阶模态作为约束。但考虑到减重可能会降低模态的频率值,因此目标定在初始值水平。表1列出了各刚度值和模态值的初步目标值。

  2.2 建立拓扑优化模型

  在不改变车门原结构的基础上进行拓扑优化设计。原则是在保证刚度、模态基本不变的前提下,计算得出对车门性能贡献较小的零件。
 
  一般情况下,车门的铰链是固定的,不考虑优化;车门外板厚度因需满足抗凹等要求,也不考虑优化;外板防撞板因侧碰要求也不考虑优化;车门功能件如玻璃导槽、升降器安装板及其连接件等也不参与优化。因此设定拓扑优化空间为图1和表2所示各零件。设定优化单元类型为壳单元。

  系统响应的设定。本模型的响应有10个,其中刚度7个工况对应7个静态位移的响应,2个模态对应的频率响应,最后为车门总质量响应。

  优化约束的设定。本模型共设置了9个约束,其中7个刚度工况约束,2个模态频率约束。需注意的是:为保证比较明显的优化效果,约束值的设定应大于分析得出的最大位移量,各约束的值如表3所示。

  优化目标的设定。拓扑优化的目的是对车门进行轻量化设计,因此本模型的优化目标设定为车门总质量最小。

  在HyperMesh里完成拓扑优化模型的前处理后,将模型递交Optistruct求解器进行优化计算。

  2.3 拓扑优化结果

  用HyperView察看拓扑优化的密度分布图。下列均隐藏了不参与优化的零件。

  从图2可以看出,内板上密度分布相对较均匀,且密度分布基本在0.5以上,密度在0.2以下的区域不多,减重空间不大。

  从图3则可以看出,区域1和区域2的密度较低,两个区域的密度分布大多在0.25以下,是可以挖孔或者减薄的地方。其中内板中部内加强板整块板上的密度分布都较少,仅有少量区域密度分布较多(如图4所示),因此,此零件是轻量化重点零件,可以尝试取消此零件,或者进行大范围挖孔。铰链加强板的密度分布如图5所示,下铰链安装板密度分布如图6所示,根据云图,可以适当减小这两个零件的尺寸或者厚度。

  从拓扑优化结果来看,具有大的减重空间的零件为门把手加强板、外板加强板、内板中部内加强板、铰链加强板和下铰链安装板。实际上,门把手加强板是加强门把手处的局部刚度,不可取消,只可进行厚度优化。铰链加强办、外板加强板、下铰链安装板也不具备取消的条件,只可厚度优化。内板中部内加强板具备取消的条件,并且此零件无其他特殊功能,因此是整体取消的潜在零件。

  2.4 轻量化的具体方案

  从拓扑优化的结果来看,内板中部内加强板是重点减重零件。轻量化方案即是将内板中部内加强板取消,适当修改内板中部外加强板的结构,然后对剩余其它车门零件进行厚度优化,使得车门性能满足已定的目标值。

  第一步即取消零件内板中部内加强板。此零件初始厚度为1.75mm,质量为2.142kg。

  第二步修改内板中部外加强板结构,车门初始状态内板带线处结构外视图如图7所示,截面图如图8所示。从图中可以看出,内板中部内加强板上沿与内板上沿平齐,使得内板带线刚度加载位置处有两块板支撑。取消内板中部内加强板后,带线处加载位置就只有内板起支撑作用,如此必将导致变形迅速增大。为避免这种情况发生,必须将内板中部外加强板上沿升高,使得其上沿也与内板上沿平齐,如此加载位置处仍有两块零件支撑。

 
  修改结构之后内板带线处结构外视图(即从车门外板向车门内板方向看)如图9所示,内板带线处只剩两块钣金,即内板和内板中部外加强板图。截面图如图10所示。

  2.5 修改结构后的厚度优化

  经过拓扑优化取消内板中部内加强板后,车门性能可能发生了变化,因此需要对车门系统剩下的零件进行厚度优化,保证车门性能不降低。厚度优化也采用Optistruct软件。

  (1)设计变量

  厚度优化的设计变量少了零件内板中部内加强板,表4中列出了参与厚度优化的零件名称和初始厚度。

  厚度优化总共选取了12个零件作为设计变量,每个设计变量的初始值为各板件的初始厚度,各板件厚度下限均设为0.5mm,上限均设为3.5mm。

  (2)约束条件

  为了保证车门性能达到已定的目标值,厚度优化的约束条件不能超过目标值。本次厚度优化中,7个刚度工况的约束条件设为位移不大于目标值,两个频率的约束条件设为不小于目标值,如表5所示。

  (3)目标函数

  本次厚度优化的最终目的是对车门进行轻量化设计,因此目标函数设定为使车门质量最小。

  (4)优化结果

  经过Optistruct优化计算后可以得到参与厚度优化的零件的最优厚度。实际上零件厚度一般只能精确到小数点后两位,因此必须对软件厚度优化的输出结构进行工程修正,最终结果如表6。

  车门初始状态质量为24.17kg,优化后的最终结果车门质量为22.34kg。减重1.83 kg,或减重7.57%

  3. 轻量化方案的对比验证

  3.1 刚度验证

  将修正后的厚度赋予对应的零件,重新计算修正过后的模型的刚度。结果如表7:

  从表7中可以看出,除内板带线刚度降低外其余刚度均比初始状态有所提高。内板带线刚度性能虽有较大降低,但由于车门初始的内板带线刚度性能很高,有非常大的富余,且该方案的内板带线刚度未超过目标值,仍具有减重空间。优化后相对车门初始状态减重1.83kg,减重比达到7.57%,综合整体性能来看,减重效果比较明显。

  3.2模态验证

  将修正后的厚度赋予对应的零件,重新计算修正过后的模型的模态。结果如表8所示:

  从表8可以看出,整体弯曲模态频率比初始状态有所提高,整体扭转模态频率比初始状态稍有下降。

  4.结论:

  本文在已知某车门仿真性能的基础上(包括刚度性能和模态性能)借助OptiStruct对车门进行了拓扑优化,对拓扑优化的结果进行进一步的分析得到了轻量化的初始方案:取消内板中部内加强板,修改内板中部外加强板结构,很多零件的厚度可以减薄。然后对剩余零件用依然Optistruct进行厚度优化,从而得到了轻量化的最终方案。

  为了评价轻量化方案是否可行,本文最后用有限元方法模拟分析了车门轻量化后的方案,并与初始性能进行对比,对比结果显示在质量减少了7.57%的情况下,刚度和模态性能均有不同程度的提高。从而可以得出结论:此轻量化方案可行。

  5.参考文献

  [1] 鞠晓锋, 陈昌明, 吴宪. 现代汽车轻量化技术. 设计研究, 2006, 9: 31-33

  [2] 王宏雁,徐少英. 车门的轻量化设计. 汽车工程,2004, 26(3):350-354

  [3] 田浩彬,林建平,刘瑞同,等. 汽车车身轻量化及其相关成形技术综述. 汽车工程,2005, 27(3):381-384

  [4] KrogL,Tucker A,Kemp M,Boyd R.Topology optimization of aircraft wing box ribs.10’“AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,2004

  [5] Junbo Jia,Anders Ulfvarson A parametric study for the structural behaviour of a lightweight ering Structures,2004,26:963-977

  [6] 胡朝晖,成艾国,王国春,钟志华.多学科优化设计在拼焊板车门轻量化中的应用.中国机械工程,2010,21(4):495-499

  [7] 左孔天. 连续体结构拓扑优化理论与应用研究: [华中科技大学博士学位论文]. 武汉: 华中科技大学, 2004, 8-12

Lightweight of Mini-car Door Based on Topology Optimization

Wu Fei, Zeng Ji, Shi Shaoliang

  Abstract: Today, vehicle lightweight technology has become a very important research topic in the Automotive Technology Development. There are many ways to reduce the Vehicle weight. Optimize the vehicle structure is the focus of the present study, and it is the most common and most obvious method. This paper was about the car door lightweight. It was a structure optimization. Based on the simulation performance of a mini car door, topology optimization and thickness optimization of the door were completed with OptiStruct, in order to achieve the light weight of the door. Finally, the simulation performance of the original scheme and the news were compared. The result showed that the weight was reduced 7.57%, while the performance of the door had improved to some extent. Thus proved the feasibility of this lightweight

  Keywords: Topology Optimization Thickness Optimization Lightweight OptiStruct

 

品牌社区
—— 造车工艺 ——
—— 数字化制造 ——
—— 智能驾驶 ——
—— 新能源技术 ——
—— 机器人技术 ——