info
西门子:电池白皮书
行业动态
MORE...
应用案例
MORE...
技术前沿
MORE...
当前位置:首页 造车网二级技术页面 正文
Coating plastics online
转载 :  zaoche168.com   2009年03月18日

Plastic add-on parts for car bodies, such as bumpers, trunk lids or exterior door panels, will only be permanently and broadly utilised in automotive construction when they can be integrated into the manufacturing sequence at an early stage and without requiring any additional work.

To assess how plastics can be coated in the online plant, the entire coating process should be considered. The discharge capacity of the material alone must not be a criterion. It is much more appropriate to consider each coating process individually. The coating result is decisively dependent on the coating technique and coating system used.

Even though plastics that can be coated online are not unkown in the market , each new application poses a challenge because the high requirements made by the automobile industry are not yet met across the board by the materials available today.

To help overcome this, chemicals manufacturer BASF has created a new polyamide – Ultramid – which is an impact – modified, mineral-filled, partially aromatic polyamide . This new technology has been modified to create Ultramid Top 3000, which meets the demand for weight reduction made by car manufacturers and promotes the trend towards individualisation and greater variety while also offering cost advantages.

Only through the design freedom that such plastic solutions offer will the visions of car designers have a chance of becoming a reality in the future.

Considerable improvements can be achieved with Ultramid Top 3000, especially in comparison to the often employed polymer blends based on PPE/PA 66,” says Jorg Schnorr, Application Development Automotive, Interior/Exterior, BASF.”The outstanding property of the new plastic is its considerably lower coefficient of thermal expansion (CTE), which ensures dimensional stability even at elevated service temperatures.”

The very high thermal stability of this material means that it can also be used in coating and drying processes at temperatures just above 200. The high stiffness of Ultramid, which is  retained even when it is moist, gives the components greater and tangible sturdiness.

Moreover, the material absorbs water considerably more slowly and also releases it more slowly. The dimensional changes associated with this are likewise delayed, so that it is less sensitive to climate fluctuations.

The latest findings in nanotechnology have also been incorporated into the development work. This technology ensures a high flowability and thus allows easy processing by means of injection molding.

Ultramid Top 3000 has already been successfully used in various coating lines under different conditions and coating concepts.

This plastic which can be coated online, will be particularly successful in entering serial automotive production if the injection-molded parts, like sheet metal, are installed in the raw frame and then move through the entire manufacturing process without any additional work being required.

 

参考译文:

 

汽车车身的塑性附加件,如保险杠、行李舱盖和门外板,都只会在他们很容易的被集成到制造工序的早期并且不需要额外加工的条件下被拷久和广泛的应用于汽车结构中。

对于如何在装配线上对于塑性部件进行线喷涂这个问题,我们需要靠需整个涂装过程。材料本身的流量通过能力不应该单独的成为一条准则,单独考虑每一个涂装的步骤更加合适。涂装的结果是由涂装的技术和涂装所使用的系统决定的。

尽管大家都知道塑性部件可以在流水线上进行涂装,但每一项新的应用仍然是一次全新的挑战,因为目前可以应用的材料还没有全面满足汽车工业的高标准要求。

为了克服这个困难,化学品制造商巴斯夫公司制造出了一种新的聚酰胺尼龙6材料,这是一种改进了耐冲击性能、加入了矿物填料并含有部分芳香族成分的聚酰胺材料。这种新的技术经过改进后可以生产出Top3000型聚酰胺材料,它可以满足汽车制造商们提出的轻量化的需求,并在促进个性化的多样化的同时体现出了成本的优势。

只有通过这样的塑性材料解决方案带来的设计上的自由,汽车设计师们的愿景才有机会在未来变成现实。

“通过聚酰胺Top3000,我们极大的改善了塑性部件的性能,特别是相比其他经常用到的基于聚酰醚/聚酰胺66的高分子聚合物”,巴斯夫汽车内外饰应用部的Jorg Schnorr说,“这种新塑性材料的突出优点在于它极低的热胀率,这保证了即便是在相对较高的工作温度下,它仍然能保持良好的尺寸稳定性。”

这种材料极高的热稳定性意味着它可以在涂装和烘干这些高于200℃的过程中加以应用。聚酰胺材料即使在高环境湿度下仍不减弱的高刚度特性,使得部件的坚固性更加显著。

此外,这种材料对于水分的吸收速度比传统材料要慢的多,释放水分的速度也要慢得多。这样一来与水分吸收相关的尺寸变化就会被相应的延迟,所以它对于气候的波动也更加的不敏感。

在纳米技术方面的最新发现也被应用到研发工作中来,这项技术确保了材料的高流动性,这样一来它就可以通过注塑成型的方法进行加工。

聚酰胺Top3000已经在多条涂装线上成功应用,这些涂装线条件各异并且采用了不同的涂装方法。

可以在线涂装的塑性材料,将会在序列生产的汽车产品中取得极大的成功。在序列生产中,像金属薄板这样的注塑件,它被固定在整车框架之后在整个制造过程中就不再需要其它的加工。

品牌社区
—— 造车工艺 ——
—— 数字化制造 ——
—— 智能驾驶 ——
—— 新能源技术 ——
—— 机器人技术 ——